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Abstract

Traffic signs exist in our lives every day. With the de-
velopment of artificial intelligence (Al) and deep learning,
more and more methods have been developed to do pattern
detection and recognition tasks. In our project, we explore
two different classification and verification architectures on
TT100k dataset, first using a DARTS-based model and sec-
ond using a MobileNet-based model, the later achieving an
accuracy of almost 90%. We also designed a class verifi-
cation model which achieves 98.9% precision, based on a
Siamese network with MobileNet as the backbone model.
Our model was successfully able to generalize well on test
data which was completely unseen while in the training
phase, where our test data was taken from a German traffic
signs dataset, hence being very different from the training
data, which consisted of traffic sign images collected from
China. Our project focuses on the important application of
traffic sign classification and verification, which can be a
major step in further development of self driving cars.

1. Introduction

In modern day, Artificial Intelligence(Al) is in the
forefront amongst various fields of research, both in
academic and industrial settings. Image classification is a
useful application of Al with and with currently available
algorithms and compute power for machine learning and
deep learning techniques, has proven to be an almost solved
problem. In our project, we focused on the application of
deep learning on traffic sign classification and verification,
essentially a image classification and verification task.

In the initial years, Traffic sign detection and classifi-
cation have been attempted by Md. Abdul Alim et al in

[1] where they’ve used color features and a simple neural
network for the classification task. As years progressed,
and deep learning models have taken over representation
and classification tasks with outstanding precision, Shao
Femind et al [2] have utilized simplified Gabor filtering
methods to pre-process grey-scale images, passing them as
an eight channel input to a CNN to perform the necessary
feature extraction and classification, in real time environ-
ments.

Further work has been done in [3] where they use
“highly possible regions proposal network” (HP-RPN) to
a modified R-CNN based network, essentially filtering out
most non-traffic sign areas in images. Domen Tabernik
et al [4] have utilized a Mask R-CNN detector, alongside
using novel data augmentation techniques based on the
distribution of geometric and appearance distortions, hence
improving the learning capability on the domain of traffic
signs.

2. Preliminaries

In our project, we performed two separate tasks: traffic
sign classification and verification. The classification task
being given a traffic sign, we have to give an output refer-
ring to its original class, such as a speed limit sign (with its
value) or a height limit sign. For the verification task, given
two images, we give an output indicating whether the two
images are from the same class or not. For example, if the
system has one speed limit sign and one prohibition sign,
then the output is “Not Same”; if the inputs are two prohibi-
tion sign then the output is “Same”. To reach our goals, the
dataset and data pre-processing methods chosen have been
laid out below, in the following sections.



2.1. TT100K Dataset

In our project, we used Tsinghua-Tencent 100K
(TT100K) dataset [3]] as training and testing data. TT100K
is a benchmark for traffic-sign detection and classification.
It provides 100000 images containing 30000 traffic-sign in-
stances. It is focused on small object detection in real world.
Examples of images can be found in Fig.|l} Signs in yel-
low, red and blue boxes correspond to warning, prohibitory
and mandatory signs respectively. In the dataset, each traffic
sign has its own label. Also, some classes are grouped as a
family such as speed limits for different speeds are grouped
as one as “pl*”. For example, “pl60” means speed limit for
60 kmph speed limit sign.

2.2. Data Pre-processing

Original TT100K data is not enough to train a good
model, thus data augmentation was done on the available
images to prevent over-fitting and improve the robustness
of the models. In our project, because of the specific way
in which most typical traffic signs look, some of the tra-
ditional transformations on image recognition like upside
down rotation may change the meaning of the sign. Hence,
meaningful augmentation methods that we selected are as
follows.

e Slight angular rotation: Here we use a small angle ro-
tation to prevent changing the meaning of the image.
For example, if we have a warning sign that shows road
changing to the left, and after we do the 180° rotation,
the sign would have no meaning because there is no
sign which means the road is changing backward to
the right. So we can only apply rotations less than 45°

e Illumination level change: Because in TT100K
dataset, images are collected from different illumina-
tion levels, the traffic signs in the dataset may be dif-
ferent from what are shown in Fig.[l| Thus we have to
change the illumination level of the signs to make our
model capable to recognize the traffic signs in daylight
setting and evening settings.

3. Traffic Sign Classification

In this section we include the details of our implementa-
tion of traffic sign classification task and the details of the
architecture chosen.

3.1. DARTS-Based Model

Differentiable architecture search (DARTS) [6] was pro-
posed based on continuous relaxation and gradient descent
in the architecture space, as shown in Fig. 2| This method
has brought about a large improvement in most of the Rein-
forcement Learning based methods, such as [7]. ENAS [8]
brings improvement to this method and allows it to reach an

efficiency close to DARTS, but DARTS still possesses the
advantage of being an easy run on a single consumer grade
GPU, making it a better choice for our study.

3.2. MobileNet-Based Model

MobileNet [9] was proposed as an efficient network ar-
chitecture and a set of two hyper-parameters in order to
build very small, low latency models that can be easily
matched to the design requirements for mobile and embed-
ded vision applications. It has fewer number of parameters
and fewer number of multiplications and additions com-
pared to traditional convolution neural networks.

In MobileNet, it uses a depth-wise separable convolution
which is shown in Fig. 3]

Also, in MobileNet it uses another architecture of convo-
lutional layer instead of the traditional layer, which is shown

in Fig. [
4. Traffic Sign Class Verification

In this section we give details of our approach to class
verification and the proposed model to deal with the task.
In the verification problem, the task at hand is about how
to design a network to tell if two traffic signs are from the
same class or not. Because we know that some traffic signs
are very similar to each other like speed limit signs with
the difference only in number. Thus this task is also im-
portant nowadays, in application related to autonomous ve-
hicles which have to exactly identify what the speed limit
exactly is in order to accelerate/decelerate the vehicle ac-
cordingly.

4.1. Siamese-Based Model

A Siamese neural network [10] is an artificial neural net-
work that uses the same weights while working in tandem
on two different input vectors to compute comparable out-
put vectors. Architecture of a Siamese network is shown in
Fig. 3] [L1]].

To make use of input images, we have to use a specific
model to extract the embeddings of the image. Like what
we learned in class to do the image captioning task, we use
the network of image classification to extract the image em-
beddings. Here we have utilized a Siamese-based model to
do our task of traffic sign class verification.

The backbone model we have used to extract the image
embeddings is a MobileNet [9], which was mentioned in
Section.[3.2]

5. Numerical Results

In this section we will include the results of our two
tasks.
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Figure 1: Traffic sign examples in TT100K.

Figure 2: DARTS: (a) Operations on the edges are initially
unknown. (b) Continuous relaxation of the search space by
placing a mixture of candidate operations on each edge. (c)
Joint optimization of the mixing probabilities and the net-
work weights by solving a bi-level optimization problem.
(d) Inducing the final architecture from the learned mixing
probabilities.

5.1. Image Classification

5.1.1 Mobilenet baseline

The goal of this part is to get a quick baseline of the com-
plexity of our task. The goal here is not just to fine tune to
the best possible results but to see what a model such as a
MobileNet can do.

You can see in Fig. [6] the evolution of the main param-
eters during training. It can be noted from this graph that
if we could have trained further to improve the validation
accuracy, then the validation accuracy would not have gone
much higher than 90%.
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(c) 1 x 1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

Figure 3: The standard convolutional filters in (a) are re-
placed by two layers: depth-wise convolution in (b) and
point-wise convolution in (c) to build a depth-wise sepa-
rable filter.
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Figure 4: Left: Standard convolutional layer with batch
norm and ReLU. Right: Depth-wise Separable convolutions
with Depth-wise and Point-wise layers followed by batch
norm and ReL.U.
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Figure 5: Architecture of Siamese Network.
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Figure 6: Evolution of the loss and metrics during training
of MobileNet on TT100k.

5.1.2 Darts

Our first step in this study was to see if using Darts [6] could
help to produce a better architecture than what we had with
MobileNet [9] to do traffic sign classification while main-
taining a high prediction speed.

This experiment has proven to be unsuccessful given the
small number of data available. Darts quickly overfits the
training data, reaching 100% top one accuracy, while hav-

Same at 38% Same at 87%

(a) One of the 4 FN cases (b) One of the 58 FP cases

Figure 7: Example of miss classification by our model on
TT100k.

ing only 7% top one accuracy on the validation data, hence
proving that this approach is not the way out to solve our
specific problem.

More aggressive data augmentation or dropout could be
used to improve the results, but given the time available we
weren’t able to access those points.

5.2. Image Class Verification

In this section we cover the results we obtained from the
Siamese architecture described in Section .1l We will first
show the results on the validation dataset and then see how
these results can be extended to other data, without any ad-
ditional training.

In each case, we randomly sampled 10, 000 pairs of im-
ages from our dataset each with a 0.5 probability to be of
the same class.

5.2.1 TT100K results

These results directly come from the validation split of our
dataset and so are expected to be very good as every class
were seen during training, and in similar conditions.

As you can see on Tab. [I] the results are following this
expectation with a very high 98.9% precision and a 99.9%
recall. You can find two example of miss classification on
Fig.[7]

Reviewing the results from our network actually make
us discover error in the TT100k dataset, as our model was
predicting the correct label, but the ground truth label given
to that image was wrong. This shows that the dataset could
be improved upon, by annotating the ground truth more ac-
curately, so there are no errors taught to the models in the
training phase.

5.2.2 GTSDB

GTSDB [12] is a dataset that is smaller than TT100k as it
is only composed of 1, 000 images. But this size is still per-
fectly fine for our testing purpose. This dataset came from
Germany and hence follows a traffic sign convention similar
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Figure 8: Example example of all the different cases of pre-
diction of our model over GTSDB.

to the one used in china, with however a lot of differences.
Hence, it makes this set a very interesting test bed as it pro-
vides a completely new set of classes, but with similarly
shaped signs. The results on this set will illustrate how well
this model is able to generalise on unseen traffic signs.

Tab. [T] give the numbers for this experiment. As you can
see Fig.[§] even if our model never saw the given sign class
before it’s still able to generalise well and predict the correct
label. You can see that the stop sign in China doesn’t have
an English word in it but instead has a Chinese character,
showing that our model didn’t learn about English character
enough to generalise here. However, on the other side our
model is able to tell the numbers apart as you can see on
Fig.[8d|

In conclusion from this set of data, we can tell that our
model is able to generalise to unseen classes in the cases of
German Traffic signs.

5.2.3 US Curve

In this case we evaluated our model on a dataset of warn-
ing signs in the US. This dataset is not publicly available
yet. These kind of signs being completely different from
the signs used in our training we decided to use it to further
test the generalisation capabilities of our model.

You can see on Tab. [I] that this dataset is getting lower
precision and recall than the previous one, as expected.
Fig.[9] show some interesting case we find during our study.
As illustrated by Fig. [9al our model as some trouble with
pictographs that weren’t seen during training previously, but
is however still able to handle obstruction and minor mod-
ification such as the mirror transformation in Fig. and

(c) TP

(d) TN

Figure 9: Example example of all the different cases of pre-
diction of our model over our US curve sign dataset.

Data TP TN FP FN | Prec. | Recall
TT100k | 5042 | 4896 58 4 98.9% | 99.9%
GTSDB | 4424 | 4289 | 717 | 570 | 86.1% | 88.6%

Curve | 4474 | 2510 | 2476 | 540 | 64.4% | 89.2%

Table 1: Results for the model trained on TT100k

So, if the precision is very low, due to a large number of
False Positives, we were still impressed to get such accurate
results on a dataset completely different from what we used
for training, which shows the robustness and generalization
capabilities of the developed architecture, as this dataset
is composed of signs with completely different shapes and
colors than the one used for training.

6. Conclusions

In this project, we performed traffic sign classification on
TT100K dataset to do image classification in two different
ways. We first explored the classical approach by directly
classifying the image, using well know architecture such as
MobileNet or trying to find the best performer for our task
with an architecture search. We then tried another approach
involving asking the network to compute the similarity be-
tween two given traffic signs using a Siamese network.

The first approach quickly showed its limits, reaching
high accuracy but having problem with the classes with only
few available examples. The second approach, however,
fixed that issue and allowed to generalise the trained model
to signs completely different from the one seen during train-
ing, by skipping the memorisation aspect of the task and so



allowing to train a classification model with virtually only
one example.

This last approach was proven to be more successful at
solving this task than the first one, hence showing the bene-
fits of incorporating a Siamese model in this kind of a clas-
sification task.
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